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BACKGROUND: BEAM SEARCH ALGORITHM

While decoding with a sequence-to-sequence model, we could not afford to
search globally for optimal output sequence, so researchers often resort to
beam search algorithm to approximate exact search. The beam search algo-
rithm expands B;_; to B, as follows:

By=[(<s>, p(<s> | x))]

b
Bi=top{(yoy;, s-p(y|x,y)) | (¥,s) € B_1}
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Figure 1: Examples of beam search algorithm with beam size 3. Red arrows denote greedy
search (beam size 1).

In the end, the algorithm chooses the candidate with highest log-probability:

y" = argmax sc(x,y) = argmax » logp(y: | X,y<)
y:comp(y) y:comp(y) <|y|

where comp(y) 2 (¥|y| = </eos>) returns the completeness of a hypothesis.

BEAM SEARCH CURSE

It's widely observed that as beam size increases after 5, the performance
of sequence-to-sequence models, as quantified by the BLEU score, drops
greatly. Since the models could not leverage the computational power from
wider beams, we call this phenomenon the Beam Search Curse.
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Figure 2: While the BLEU score drops with an increasing beam size (after 5), the brevity
penalty drops with a similiar curve.

EXPERIMENTAL SETUP

o Based on OpenNMT-py, a PyTorch reimplementation of Torch-based
OpenNMT (Klein et al., 2017).

® 2M Chinese-English sentence pairs for training.

©® Used byte-pair encoding (BPE) (Senrich et al., 2015) to reduce
vocabulary sizes down to 18k/10k respectively.

o Chinese to English: NIST 06 newswire portion (616 sentences) for dev;
NIST 08 newswire portion (691 sentences) for test.
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WHY THE CURSE EXISTS

©® As beam size increases, the more candidates it would explore. Therefore, it becomes easier to find
the <eos> symbol and terminate. Left figure shows that the </..s> indices decrease steadily with
wider beams.

® Then, because of the internal property of log-probability, shorter candidates have clear
advantages w.r.t. model score.

As a conclusion, the search algorithm would find shorter candidates, and prefer even shorter ones
among them.
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Figure 3: Left: Searching algorithm with wider beams generates </cos> earlier. Right: The model score (log-probability)
strongly prefers shorter candidates.

HOW TO BREAK THE CURSE

Previous Methods
o Length Normalization (Bahdanau et al., 2014): normalize the score by its length.

o Word-Reward (He et al., 2016): add reward r to each word.
® Bounded Word-Reward (Liang et al., 2017): add reward r to each word up to a bound.

Rescoring with Length Prediction We use a 2-layer MLP, which takes the mean of source hidden states
as input, to predict the generation ratio gr(x). Then we can get our predicted length L,,.;(x) = gr(x)-|x]|.

Bounded Word-Reward w/ Predicted Length To favor longer generation, we add rewards r to each
word up to its predicted length.

L(Xa Y) — min{|Y|v med(X)} SAC(Xa Y) — SC(Xv Y) T L(Xv Y)
where sc(x,y) is the original model score (log-probability).

Bounded Adaptive-Reward Instead of a tuned reward r, we add an adaptive reward to each step
based off local beam information. With beam size b, the reward for time step ¢ is the average negative
log-probability of the words in the current beam.

ry = —(1/b) 20, log p(word;) sc(x,y) = sc(x,y) + fof’w Ty

BP-Norm Instead of adding rewards, we apply brevity penalty to the length-normalized model score.

bp = min{e' " 1} se(x,y) = log bp + sc(x,y)/|y|

DISCUSSION

Among all methods, we recommend BP-Norm for the following reasons:
o BP-Norm works equally well with others, while doesn’t contain any hyper-parameters.

® BP-Norm is intuitive and in the same form as BLEU. Both of their exponential forms are products
of brevity penalty term and geometric mean of probabilities (BI>-Norm) or accuracies (BLEU).
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Figure 4: BLEU and length ratios of various rescoring methods.
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Figure 5: BLEU and length ratios over various input sentence lengths.
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